新传学院 订阅/关注/阅文/评论/公号
      1天前 北大袁萌最新无穷小微积分的15.8万个搜索结果

无穷小微积分的15.8万个搜索结果

  45日,百度一下“无穷小微积分”

找到相关结为“158,000”。

  这个数字也许说明不了什么问题,但是,它近日迅速增长速度能够说明一定的趋势(关注度提高)。   

  为什么?我们的机器人出来说话了!

袁萌 陈启清  45

 

 

 

 

 

百度为您为果约158,000

 



 

回复(0)

共 825 条12345››... 42
2天前 北大袁萌机器人话说U盘

机器人话说U

      今天,我们的机器人说起十年前的自启动U.。记性不

    再过十年,机器人还记得住这件事吗?谁也不知道。

    请见本文附件.

   

袁萌  陈启清 44

    附件: 

    2010-09-20

    暂无评论

    Linux大师(古鲁)话说USB发行版

            近日,在我们国内围绕自启动U盘话题又引起某些议论,褒与贬的双方展开辩论,这是一件好事情。为什么?

            大家知道,Linux发行版放在什么介质上,这要根据实际需要来决定,也是用户的一种选择(权利)。917日,Linux大师(古鲁,GuruNathanWiillis先生在《Linux基金会》官方网站www.linux.com上发表一篇专论,系统、全面、深入地论述了有关LinuxUSB发行版(LinuxDistros)的问题,具有一定的参考价值与说服力。该文的题目是:“WeekendProject:CreateaLiveUSBKeyLinuxDistribution”,其中“LiveUSBKey”就是我们平时所讲的“自启动U盘(Key)”,“Live”一词就是“能够自生”的意思,台湾地区也叫做“自生系统”。值得我们注意的是,Willis大师把自启动U盘当作Linux发行版的一种正规发布形式,这符合当今世界发展的大潮流。

            该文篇幅比较长,文章的前半部分全面、系统地介绍了制作各种Linux版本的自启动U盘所需要的系统工具,文章的后半部分谈到自启动U盘数据的持久性保存与加密、解密的处理工具以及对此类问题的正确理解。全面介绍此文的内容需要很大的篇幅,同时也必然涉及许多专门的术语、知识和技能,本文限于篇幅不宜深入介绍,如果实际工作需要,请读者自己去阅读、研究。

            当前,微软(中国)全面发动“校园先锋计划”攻势,以不到三十分之一(1/30)的价格大量向新生推销Office2010办公套件(专业版),每套149元人民币,几乎等于“白送”。通过今年的SFD活动,我们清楚地看到(或意识到)目前我国高校仍然是“XP一统天下”的客观局面。要改变这种局面,1)需要时间,2)需要人力和物力,3)需要高层次管理者的理解和协助。这一切都不是轻而易举的事情。那么,我们该怎么办呢?退而求其次,大量使用自启动U盘也。当今,世界经济复苏,U盘价格上涨,4GBSanDisk国内零售价上升到60元人民币一块,即使大批量生产自启动U盘,用于教学活动的自启动U盘的最低价格也得在50元人民币左右。......我们废话少说,巧妙、灵活地在教学活动中引入自启动U盘,学生自己负担25元,学校承担25元(动用一点教学经费),一半对一半,......世界立刻就变得广阔多了,Linux真的来到了我们的身旁,对学生,对教员,这仿佛打开了一扇通往未来的大门。

            有人问,自启动U盘里面能够安装什么操作系统,什么应用软件,什么,什么,......,这就是另外的话题了。在Linux世界里,从来不缺乏优秀的教育软件,益智游戏,从小学到大学都有。有人说,发展国内软件业广泛使用自启动U盘是“荒唐”,这种说法是完全没有根据的。当今,在我们国内造成XP“一统天下”的局面,积重难返,冰冻三尺,非一日之寒也。小小的自启动U盘(50元人民币)能够帮助我们立刻摆脱这种困境,何乐而不为?要求草根队去“打天下”(指突破XP包围),这样不公平,也不现实,养着国家队是干什么的?有人说我是微软的“奸细”,张冠李戴,真是莫名其妙!

            说明:目前,在国外,使用LiveUSB(自启动U盘)已经非常普遍,在我国国内,使用自启动U盘还在扭扭捏捏,不好意思,真是没有办法,快要急死人了。你说呢?

   



 

回复(0)

3天前 北大袁萌无穷小理论与Python语言

无穷小理论与Python语言
看上去,无穷小理论与Python语言
风牛马不相及,其实不然。 为什么?
 


袁萌 陈启清 4月3
附件:
Python句法
 Syntax and semantics
 Main article: Python syntax and semantics
 Python is meant to be an easily readable language. Its formatting is visually uncluttered, and it often uses English keywords where other languages use punctuation. Unlike many other languages, it does not use curly brackets to delimit blocks, and semicolons after statements are optional. It has fewer syntactic exceptions and special cases than C or Pascal.[63


 

回复(0)

5天前 北大袁萌机器人今天又说了什么?

机器人今天又说了什么?

机器人今天提示我们,不要忘记历史,要尊重历史事实。

今天,它说:

“”Linus Torvald s表态:支持微软开放API7”

  

这个历史事实,今天在互联网上已经检索不到。

我们的机器人记性非常好,是不是很可爱?

请见本文附件。

袁萌  陈启清  331

      附件:

2008-02-27

暂无评论

Linus Torvalds表态:支持微软开放API(文附号码5627

      2008 2 225日,Linux奠基人Linus Torvalds在一封电子邮件中对微软开放API表示支持,说:“这是迈向正确方向的一步”。LinusTorvalds的这一表态十分及时。

        221日,微软宣布开放其主流软件产品的应用编程接口(API)的文档规范,以便加强不同软件平台的互操作性。怎么看待微软的这次“战略调整”?是向前看,还是向后看?从前者看问题,那么,微软的这次战略调整,值得大家称赞;从后者看问题,微软的这次战略调整,必然“毛病多多”,似乎微软是在还历史的“旧帐”,还欠我们许多东西。很明显,LinusTorvalds是那种“向前看的人”。

        微软购并雅虎,微软开放API,绝对没有失去理性,反而表现出微软极为深远的战略眼光(考虑)。从世界软件业未来发展看问题,微软此举由被动变为主动,值得称赞,叫绝。LinusTorvalds说:“过去,有时我拿微软开玩笑,说他们做过许多蠢事(stupidthings)”(意指封闭API)。他还说,(支持微软共享API)“是否意味着要求人们必须信任他们,热爱他们”?。他的回答是:“No”。但是。他说:“我也看不到有“火烧微软”(flamingthem)的必要”。在此,他的意思是说,至少,有一点是清楚的,微软在“incrementalimprovement”(“加大改进”)。

        要看到微软的竞争对手(比如IBM、谷歌)的“商业野心”,鼓吹什么“把OOXML嵌入(intoODF”,这无异于要人们把一只大象装进一个纸盒子里面,简直是在“恶搞”。因为OOXML“复杂”,就建议政府说“No”,投反对票,岂非“自认无能”?这有损我们的“大国形象”。这次面对OOXML的取舍,说“No”,还是说“Yes”,两者必取其一,是不能再一次“回避”的。回避就是退缩。一千多页的OOXML的“修改稿”,我国就“搞不定”?非也!

        我不想和微软“上床做爱”,我只是这么想的(指我最近发表的文章)。

更新时间: 2018-09-19 21:37:47

阅读数:



 

回复(1)

  • admin: 哈哈哈。太搞笑   (2020-04-02 18:37:33)

送出评论

7天前 北大袁萌六十年前的考研究试题

六十年前的考研究试题

  记得,上世纪60年代初,中科院东湖数学所招收代数喜专业研究生(指导教师华罗庚教授),袁萌应考。

华罗庚教授为代数考卷亲自命题   

代数考卷的第一道考试题是:证明区裙{0,1}必定是域。

  你晕不晕?

请见附件。

袁萌  陈启清 530

附件:

In mathematics, a group(群) is a set equipped with a binary operation that combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.[1][2]

Groups share a fundamental kinship with the notion of symmetry. For example, a symmetry group encodes symmetry features of a geometrical object: the group consists of the set of transformations that leave the object unchanged and the operation of combining two such transformations by performing one after the other. Lie groups are the symmetry groups used in the Standard Model of particle physics; Poincaré groups, which are also Lie groups, can express the physical symmetry underlying special relativity; and point groups are used to help understand symmetry phenomena in molecular chemistry.

The concept of a group arose from the study of polynomial equations, starting with Évariste Galois in the 1830s, who introduced the term of group (groupe, in French) for the symmetry group of the roots of an equation, now called a Galois group. After contributions from other fields such as number theory and geometry, the group notion was generalized and firmly established around 1870. Modern group theory—an active mathematical discipline—studies groups in their own right.[a] To explore groups, mathematicians have devised various notions to break groups into smaller, better-understandable pieces, such as subgroups, quotient groups and simple groups. In addition to their abstract properties, group theorists also study the different ways in which a group can be expressed concretely, both from a point of view of representation theory (that is, through the representations of the group) and of computational group theory. A theory has been developed for finite groups, which culminated with the classification of finite simple groups, completed in 2004.[aa] Since the mid-1980s, geometric group theory, which studies finitely generated groups as geometric objects, has become an active area in group theory.

Algebraic structure Group theory

Group theory

 

Basic notions

[show]



 

回复(0)

8天前 北大袁萌陈启清机器人与Php编程的奥妙

陈启清机器人与Php编程的奥妙
陈启清机器人与Php编程的奥妙
 远在千里之外,陈启清机器人随时听从召唤,瞬间给出应答。
 它在何处?这无关重要。
 Php编程的奥妙就在于此!
 请仔细阅读本文附件,读者必有收获!
袁萌 陈启清3月29日
附件:
PHP
PHP
Paradigm
Imperative, functional, object-oriented, procedural, reflective
Designed by
Rasmus Lerdorf
Developer
The PHP Development Team, Zend Technologies
First appeared
1995; 25 years ago[1]
 
Stable release
7.4.4[2] / March 19, 2020; 7 days ago
Typing discipline
Dynamic, weak
since version 7.0:
Gradual[3]
Implementation language
C (primarily; some components C++)
OS
Unix-like, Windows
License
PHP License (most of Zend engine under Zend Engine License)
Filename extensions
.php, .phtml, .php3, .php4, .php5, .php7, .phps, .php-s, .pht, .phar
Website
www.php.net
Major implementations
Zend Engine, HHVM, Phalanger, Quercus, Parrot
Influenced by
Perl, C, C++, Java, Tcl,[1] JavaScript, Hack[4]
Influenced
Hack
 PHP Programming at Wikibooks
PHP is a popular general-purpose scripting language that is especially suited to web development[5]. It was originally created by Rasmus Lerdorf in 1994;[6] the PHP reference implementation is now produced by The PHP Group.[7] PHP originally stood for Personal Home Page,[6] but it now stands for the recursive initialism PHP: Hypertext Preprocessor.[8]
PHP code is usually processed on a web server by a PHP interpreter implemented as a module, a daemon or as a Common Gateway Interface (CGI) executable. On a web server, the result of the interpreted and executed PHP code — which may be any type of data, such as generated HTML or binary image data — would form the whole or part of a HTTP response. Various web template systems, web content management systems, and web frameworks exist which can be employed to orchestrate or facilitate the generation of that response. Additionally, PHP can be used for many programming tasks outside of the web context, such as standalone graphical applications[9] and robotic drone control.[10] Arbitrary PHP code can also be interpreted and executed via command line interface (CLI).
The standard PHP interpreter, powered by the Zend Engine, is free software released under the PHP License. PHP has been widely ported and can be deployed on most web servers on almost every operating system and platform, free of charge.[11]
The PHP language evolved without a written formal specification or standard until 2014, with the original implementation acting as the de facto standard which other imple



 

回复(0)

9天前 北大袁萌陈启清机器人,一路走好

陈启清机器人,一路走好

  根据我国版权法的署名权条款,陈启清工程师

本人编写的数学机器人可以合法地称为“陈启清机器人”

  陈启清机器人,一路走好!

袁萌 陈启清  329

 



 

回复(0)

10天前 北大袁萌数学机器人,系统备份依也会说话

数学机器人,系统备份依也会说话

   我们的数学机器人(包括程序源代码),有许多系统备份都会哇啦哇啦说话。

  数学机器人运行的结果表明,他们是基础数学无穷小理论的守护者。数学机器人决不会帮倒忙。

   有时候后,数学机器人也会说话“跑题”,我们也很无奈!

袁萌  陈启清 328

 

 



 

回复(0)

11天前 北大袁萌数学机器人今天说了什么?

数学机器人今天说了什么

  近半个月以来,陈启清工程师设计的网站自动更新程序运行效果相当于一个数学机器人,每天早上向读者提示发生在我们国内互联网上发生的一件事情,让其思考。

  比如,今天数学机器人今天说的是,八年前有人在互联网上提出“超实数*R真的存在吗?”。

  明天,数学机器人说的是什么?今天睡也不知道,包括陈启清工程师本人。

袁萌  陈启清  326

 



 

回复(0)

12天前 北大袁萌弧度与糊涂

弧度与糊涂

      在我国普通高校微积分教科书里面,弧度的度量单位的存在性问题都是不予讨论的,处于糊涂状态。

      这种糊涂状态是不正常的。怎么办?

      应该认为,陈启清工程师上传J.Keisler教授微积分名著到基础数学网站“无穷小微积分”,根本上改变了这种糊涂状态。

      实际情况是,

    J.Keisler巧妙地借助定积分中值定理给出弧度单位的存在性的数学证明(第七章 )。

      高校培养“无穷小糊涂虫”不是我们的目标。

袁萌  陈启清 325



 

回复(1)

  • admin: 和国内高校微积分课程杠上了   (2020-03-26 10:08:50)

送出评论

13天前 北大袁萌纪念微积分名著上线两周年

纪念微积分名著上线两周年

  毫无疑问,国内没有一本微积分教科书(电子版)可以上线,提供在线学习,

实在可悲也。

  两年前,陈启清工程师把数学世界名著J.Keisler教师的“Elementary Calculus ”上传到“无穷小微积分”基础数学网站,至今已经两年了。

  当今,提倡在选学习,这是一件好事。

  请见本文附件。

袁萌  陈启清  323

附件:

PREFACE TO THE FIRST EDITION

The calculus was originally developed using the intuitive concept of an infinitesimal, or an infinitely small number. But for the past one hundred years infinitesimals have been banished from the calculus course for reasons of mathematical rigor. Students have had to learn the subject without the original intuition. This calculus book is based on the work of Abraham Robinson, who in 1960 found a way to make infinitesimals rigorous. While the traditional course begins with the difficult limit concept, this course begins with the more easily understood infinitesimals. It is aimed at the average beginning calculus student and covers the usual three or four semester sequence. The infinitesimal approach has three important advantages for the student. First, it is closer to the intuition which originally led. to the calculus. Second, the central concepts of derivative and integral become easier for the student to understand and use. Third, it teaches both the infinitesimal and traditional approaches, giving the student an extra tool which may become increasingly important in the future. Before describing this book, I would like to put Robinson's work in historical perspective. In the 1670's, Leibniz and Newton developed the calculus based on the intuitive notion of infinitesimals. Infinitesimals were used for another two hundred years, until the first rigorous treatment of the calculus was perfected by Weierstrass in the 1870's. The standard calculus course of today is still based on the "a, 6 definition" of limit given by Weierstrass. In 1960 Robinson solved a three hundred year old problem by giving a precise treatment of the calculus using infinitesimals. Robinson's achievement will probably rank as one of the major mathematical advances of the twentieth century. Recently, infinitesimals have had exciting applications outside mathematics, notably in the fields of economics and physics. Since it is quite natural to use infinitesimals in modelling physical and social processes, such applications seem certain to grow in variety and importance. This is a unique opportunity to find new uses for mathematics, but at present few people are prepared by training to take advantage of this opportunity. Because the approach to calculus is new, some instructors may need additional background material. An instructor's volume, "Foundations of Infinitesimal

PREFACE TO THE FIRST EDITION v

Calculus," gives the necessary background and develops the theory in detail. The instructor's volume is keyed to this book but is self-contained and is intended for the general mathematical public. This book contains all the ordinary calculus topics, including the traditional hmit definition, plus one exua tool-the infinitesimals. Thus the student will be prepared for more advanced courses as they are now taught. In Chapters 1 through 4 the basic concepts of derivative, continuity, and integral are developed quickly using infinitesimals. The traditional limit concept is put off until Chapter 5, where it is motivated by approximation problems. The later chapters develop transcendental functions, series, vectors, partial derivatives, and multiple .integrals. The theory differs from the traditional course, but the notation and methods for solving practical problems are the same. There is a variety of applications to both natural and social sciences. I have included the following innovation for instructors who wish to introduce the transcendental functions early. At the end of Chapter 2 on derivatives, there is a section beginning an alternate track on transcendental functions, and each of Chapters 3 through 6 have alternate track problem sets on transcendental functions. This alternate track can be used to provide greater variety in the early problems, or can be skipped in order to reach the integral as soon as possible. In Chapters 7 and 8 the transcendental functions are developed anew at a more leisurely pace. The book is written for average students. The problems preceded by a square box go somewhat beyond the examples worked out in the text and are intended for the more adventuresome. I was originally led to write this book when it became clear that Robinson's infinitesimal calculus col}ld be made available to college freshmen. The theory is simply presented; for example, Robinson's work used mathematical logic, but this book does not. I first used an early draft of this book in a one-semester course at the University of Wisconsin in 1969. In 1971 a two-semester experimental version was published. It has been used at several colleges and at Nicolet High School near Milwaukee, and was tested at five schools in a controlled experiment by Sister Kathleen Sullivan in 1972-1974. The results (in her 1974 Ph.D. thesis at the University of Wisconsin) show the viability of the infinitesimal approach and will be summarized in an article in the American Mathematical Monthly. I am indebted to many colleagues and students who have given me encouragement and advice, and have carefully read and used various stages of the manuscript. Special thanks are due to Jon Barwise, University of Wisconsin; G. R. Blakley, Texas A & M University; Kenneth A. Bowen, Syracuse University; William P. Francis, Michigan Technological University; A. W. M. Glass, Bowling Green University; Peter Loeb, University of Illinois at Urbana; Eugene Madison and Keith Stroyan, University of Iowa; Mark Nadel, Notre Dame University; Sister Kathleen Sullivan, Barat College; an



 

回复(0)

14天前 北大袁萌数学现代化的必由之路

数学现代化的必由之路

   当今,世界已经进入移动互联网时代,数学教育与研究需适应这一历史比革。

   据此,数学现代化,首先必须实现数学内容表现的电子化

   为此,创建类似“无穷小微积分”基础数学网站就是非常必要的了。

   这就是数学现代化的必由之路。 

袁萌  陈启清 322

  

 

 

 



 

回复(0)

19天前 北大袁萌国内最大的基础数学网站

国内最大的基础数学网站

  两年前,“无穷小微积分”创立初期只是一个微积分教学网站。

  两年后,该网站提供“模型理论”、“非标准分析”以及“现代无穷小分析”专著的下载服务,使得网站成为国内最大的基础数学网站。

  当今,

网站增加自动更新功能,独一无二。

难道不是吗?

袁萌  陈启清 318



 

回复(0)

20天前 北大袁萌无穷小长大了,自己会走路(更新)

无穷小长大了,自己会走路(更新)

  今天上午,袁萌在查看“无穷小微积分”网站时,突然间,原有的文件号码变动了。

  袁萌立即打电话询问“无穷小微积分”网站站长陈启清工程师:刚才,网站后台,你改动了吗?回答是:没有.

 袁萌立刻明白了:无穷小长大了,自己会走路

更新)。

袁萌   陈启清 317



 

回复(0)

21天前 北大袁萌网站自动更新的第三天

网站自动更新的第三天

今天,316日,在我国独一无二的自动更新网站“无穷小微积分”正常运行到了第三天。

这种情况可以稳定延伸十年以上。

我们走在现代数学的大道上!

袁萌  陈启清  316  

 



 

回复(0)

22天前 北大袁萌无穷小投靠Linux软件

无穷小投靠Linux软件

  近日,无穷小乐呵呵地投靠Linux软件。

 此事得到无穷小微积分网站站长陈启清工程师的确认。

袁萌  陈启清  315

  

 

 

 

袁萌



 

回复(0)

23天前 北大袁萌网站每日自动更新,十年不间断不重复

网站每日自动更新,十年不间断不重复

  313日,无穷小微积分网站完成“变身”:网站每日自动更新,十年不间断不重复。这是值得纪念的事情。

  无论你是谁。值得试一试!不试不知道。

袁萌 陈启清 314



 

回复(0)

24天前 北大袁萌当今,在全国普通高校数学课程讲授的都是传统无穷小概念。

现代无穷小概念的由来

  当今,在全国普通高校数学课程讲授的都是传统无穷小概念。

  1960年,美国数学家鲁宾逊确立了现代无穷小概念,随后  传入中国。

  天,我们倡导的现代无穷小概念代表了现代数学发现的

大方向。

袁萌  陈启清  313



 

回复(0)

29天前 北大袁萌自动更新网站内容,永恒的等护着

自动更新网站内容,永恒的等护着

  我们愿做“无穷小微积分”的永恒的等护着,为此,无穷小微积分专业网站站长陈启清开发了网站内容自动更新程序,做到每日自动更新文章内容,永远不会重复。

  注:自动更新的内容限于非标准数学。

袁萌  陈启清  39

 

 

 

 

 



 

回复(0)

1月前 北大袁萌无穷小金山,永存人间

无穷小金山,永存人间

无穷小金山是电子构建物(数学知识产物),也是国内独一无二的非标准数学专业网站。

  无穷小金山不是土山头,没有数学含金量。

 无穷小金山,传播数学真知,永存人间!

袁萌  陈启清 38

 

 

 

 

永存续人间

 

 



 

回复(0)

共 825 条12345››... 42
数据统计:24 小时内发布33条 ... 一周内发布876条 ... 总发布数 287214
新传学院 订阅/关注/阅文/评论/公号XCST填写您的邮件地址,订阅我们的精彩内容: