**链接Link**9天前

**北大袁萌**说

**无穷分析的珍贵文献（542篇）**

无穷分析的珍贵文献（542篇）

上世纪下半叶，无穷小分析（非标准分析）得以快速发展。

在这一期间，在国际一流学术期刊上，相关研究论文出现“井喷”。

实际情况是，有数百家大学及其学者参与其中。请见本文附件。

反观我们国内，相关研究几乎完全是空白，… …其余的话就不用多说了。

袁萌 陈启清 1月18日

附件：

References

1. Akilov G. P. and Kutateladze S. S., Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).

2. AksoyA.G.andKhamsi M.A., NonstandardMethodsinFixedPointTheory, Springer-Verlag, Berlin etc. (1990). 3. Albeverio S., Fenstad J. E., et al., Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando etc. (1990).

4. Albeverio S., Luxemburg W. A. J., and Wol M. P. H. (eds.), Advances in Analysis, Probability and Mathematical Physics: Contributions of Nonstandard Analysis, Kluwer Academic Publishers, Dordrecht (1995).

5. Albeverio S., Gordon E. I., and Khrennikov A. Yu., “Finite dimensional approximations of operators in the Hilbert spaces of functions on locally compact abelian groups,” Acta Appl. Math., 64, No. 1, 33–73 (2000).

6. Alekseev M. A., Glebski L. Yu., and Gordon E. I., On Approximations of Groups, Group Actions, and Hopf Algebras [Preprint, No. 491], Inst. Applied Fiz. Ros. Akad. Nauk, Nizhni Novgorod (1999).

7. Alexandrov A. D., Problems of Science and the Researcher’s Standpoint [in Russian], Nauka (Leningrad Branch), Leningrad (1988).

8. Alexandrov A. D., “A general view of mathematics,” in: Mathematics: Its Content, Methods and Meaning. Ed. by A. D. Alexandrov, A. N. Kolmogorov, and M. A. Lavrentev. Dover Publications, Mineola and New York (1999). (Reprint of the 2nd 1969 ed.)

9. Aliprantis C. D. and Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York etc. (1978).

10. Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, New York (1985). 11. Anderson R. M., “A nonstandard representation of Brownian motion and Itˆ o integration,” Israel J. Math. Soc., 25, 15–46 (1976).

12. AndersonR.M., “Star-niterepresentationsofmeasurespaces,” Trans.Amer. Math. Soc., 271, 667–687 (1982).

386 References

13. Andreev P. V., “On the standardization principle in the theory of bounded sets,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 1, 68–70 (1997).

14. Andreev P. V. and Gordon E. I., “The nonstandard theory of classes,” Vladikavkaz. Mat. Zh., 1, No. 4, 2–16 (1999). (http://alanianet.ru/omj/journal.htm) 15. Anselone P. M., Collectively Compact Operator Approximation. Theory and Applications to Integral Equations, Englewood Clis, Prentice Hall (1971).

16. Archimedes, Opera Omnia, Teubner, Stuttgart (1972).

17. Arens R. F. and Kaplansky I., “Topological representation of algebras,” Trans. Amer. Math. Soc., 63, No. 3, 457–481 (1948).

18. Arkeryd L. and Bergh J., “Some properties of Loeb–Sobolev spaces,” J. London Math. Soc., 34, No. 2, 317–334 (1986). 19. Arkeryd L. O., Cutland N. J., and Henson W. (eds.), Nonstandard Analysis. Theory and Applications (Proc. NATO Advanced Study Institute on Nonstandard Anal. and Its Appl., International Centre for Mathematical Studies, Edinburgh, Scotland, 30 June–13 July), Kluwer Academic Publishers, Dordrecht etc. (1997). 20. Arveson W., “Operator algebras and invariant subspaces,” Ann. of Math., 100, No. 2, 433–532 (1974). 21. Arveson W., An Invitation to C∗-Algebras, Springer-Verlag, Berlin etc. (1976). 22. Attouch H., Variational Convergence for Functions and Operators, Pitman, Boston etc. (1984). 23. Aubin J.-P. and Ekeland I., Applied Nonlinear Analysis, Wiley-Interscience, New York (1979). 24. AubinJ.-P.andFrankowskaH., Set-ValuedAnalysis, Birkh¨auser-Verlag, Boston (1990). 25. Auslander L. and Tolimieri R., “Is computing with nite Fourier transform pure or applied mathematics?” Bull. Amer. Math. Soc., 1, No. 6, 847–897 (1979). 26. Bagarello F., “Nonstandard variational calculus with applications to classical mechanics. I: An existence criterion,” Internat. J. Theoret. Phys., 38, No. 5, 1569–1592 (1999).

27. Bagarello F., “Nonstandard variational calculus with applications to classical mechanics. II: The inverse problem and more,” Internat. J. Theoret. Phys., 38, No. 5, 1593–1615 (1999). 28. Ballard D., Foundational Aspects of “Non”-Standard Mathematics, Amer. Math. Soc., Providence, RI (1994). 29. Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc. (1985).

References 387

30. Bell J. L., A Primer of Innitesimal Analysis, Cambridge University Press, Cambridge (1998). 31. Bell J. L. and Slomson A. B., Models and Ultraproducts: an Introduction, North-Holland, Amsterdam etc. (1969). 32. Berberian S. K., Baer ∗-Rings, Springer-Verlag, Berlin (1972). 33. BerezinF.A.andShubin M.A., TheSchr¨odingerEquation,KluwerAcademic Publishers, Dordrecht (1991). 34. Berkeley G., The Works. Vol. 1–4, Thoemmes Press, Bristol (1994). 35. Bigard A., Keimel K., and Wolfenstein S., Groupes et Anneaux R´eticul´es, Springer-Verlag, Berlin etc. (1977). (Lecture Notes in Math., 608.) 36. Birkho G., Lattice Theory, Amer. Math. Soc., Providence (1967). 37. Bishop E. and Bridges D., Constructive Analysis, Springer-Verlag, Berlin etc. (1985). 38. Blekhman I. I., Myshkis A. D., and Panovko A. G., Mechanics and Applied Mathematics. Logics and Peculiarities of Mathematical Applications [in Russian], Nauka, Moscow (1983). 39. Blumenthal L.M., Theory andApplicationsofDistanceGeometry, Clarendon Press, Oxford (1953). 40. Bogolyubov A. N., “Read on Euler: he is a teacher for all of us,” Nauka v SSSR, No. 6, 98–104 (1984). 41. Boole G., An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities, Dover Publications, New York (1957). 42. Boole G., Selected Manuscripts on Logic and Its Philosophy, Birkh¨auserVerlag, Basel (1997). (Science Networks. Historical Studies, 20.) 43. Borel E., Probability et Certitude, Presses Univ. de France, Paris (1956). 44. Bourbaki N., Set Theory [in French], Hermann, Paris (1958). 45. Boyer C. B., A History of Mathematics, John Wiley & Sons Inc., New York etc. (1968). 46. Bratteli O. and Robinson D., Operator Algebras and Quantum Statistical Mechanics, Springer-Verlag, New York etc. (1982). 47. Bukhvalov A. V., “Order bounded operators in vector lattices and in spaces of measurable functions,” J. Soviet Math., 54, No. 5, 1131–1176 (1991). 48. Bukhvalov A. V., Veksler A. I., and Geler V. A., “Normed lattices,” J. Soviet Math., 18, 516–551 (1982). 49. Bukhvalov A. V., Veksler A. I., and Lozanovski G. Ya., “Banach lattices: some Banach aspects of their theory,” Russian Math. Surveys, 34, No.2, 159–212 (1979). 50. Burden C. W. and Mulvey C. J., “Banach spaces in categories of sheaves,” in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to

388 References

Logic, Algebra and Anal., Durham, 1977), Springer-Verlag, Berlin etc., 1979, pp. 169–196. 51. Canjar R. M., “Complete Boolean ultraproducts,” J. Symbolic Logic, 52, No. 2, 530–542 (1987). 52. Cantor G., Works on Set Theory [in Russian], Nauka, Moscow (1985). 53. Capinski M. and Cutland N. J., Nonstandard Methods for Stochastic Fluid Mechanics, World Scientic Publishers, Singapore etc. (1995). (Series on Advances in Mathematics for Applied Sciences, Vol. 27.) 54. Carnot L., Reections on Metaphysics of Innitesimal Calculus [Russian translation], ONTI, Moscow (1933). 55. Castaing C. and Valadier M., Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin etc. (1977). (Lecture Notes in Math., 580.) 56. Chang C. C. and Keisler H. J., Model Theory, North-Holland, Amsterdam (1990). 57. Chilin V. I., “Partially ordered involutive Baer algebras,” in: Contemporary Problems of Mathematics. Newest Advances [in Russian], VINITI, Moscow, 27, 1985, pp. 99–128. 58. Church A., Introduction to Mathematical Logic, Princeton University Press, Princeton (1956). 59. Ciesielski K., Set Theory for the Working Mathematician, Cambridge University Press, Cambridge (1997). 60. Clarke F. H., “Generalized gradients and applications,” Trans. Amer. Math. Soc., 205, No. 2, 247–262 (1975). 61. ClarkeF.H.,OptimizationandNonsmoothAnalysis,NewYork,Wiley(1983). 62. Cohen P.J., SetTheory andthe Continuum Hypothesis, Benjamin, NewYork etc. (1966). 63. Cohen P. J., “On foundations of set theory,” Uspekhi Mat. Nauk, 29, No. 5, 169–176 (1974). 64. Courant R., A Course of Dierential and Integral Calculus. Vol. 1 [Russian translation], Nauka, Moscow (1967). 65. CourantR.andRobbinsH.,WhatIsMathematics? AnElementaryApproach to Ideas and Methods. Oxford University Press, Oxford etc. (1978). 66. Cozart D. and Moore L. C. Jr., “The nonstandard hull of a normed Riesz space,” Duke Math. J., 41, 263–275 (1974). 67. Cristiant C., “Der Beitrag G¨odels f¨ur die Rechfertigung der Leibnizschen Idee von der Innitesimalen,” ¨Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, Bd 192, No. 1–3, 25–43 (1983). 68. Curtis T., Nonstandard Methods in the Calculus of Variations, Pitman, London (1993). (Pitman Research Notes in Mathematics, 297.) 69. Cutland N. J., “Nonstandard measure theory and its applications,” Bull. London Math. Soc., 15, No. 6, 530–589 (1983).

References 389

70. Cutland N. J., “Innitesimal methods in control theory, deterministic and stochastic,” Acta Appl. Math., 5, No. 2, 105–137 (1986). 71. Cutland N. J. (ed.), Nonstandard Analysis and Its Applications, Cambridge University Press, Cambridge (1988). 72. Dacunha-Castelle D. and Krivine J.-L., “Applications des ultraproduits a l’etude des espaces et des algebres de Banach,” Studia Math., 41, 315–334 (1972). 73. Dales H. and Woodin W., An Introduction to Independence for Analysts, Cambridge University Press, Cambridge (1987). 74. Dauben J. W., Abraham Robinson. The Creation of Nonstandard Analysis, a Personal and Mathematical Odyssey, Princeton University Press, Princeton (1995). 75. Davis M., Applied Nonstandard Analysis, John Wiley & Sons, New York etc. (1977). 76. Day M., Normed Linear Spaces, Springer-Verlag, New York and Heidelberg (1973). 77. de Jonge E. and van Rooij A. C. M., Introduction to Riesz Spaces, Mathematisch Centrum, Amsterdam (1977). 78. Dellacherie C., Capacities and Stochastic Processes [in French], SpringerVerlag, Berlin etc. (1972). 79. Demyanov V. F. and Vasilev L. V., Nondierentiable Optimization [in Russian], Nauka, Moscow (1981). 80. Demyanov V. F. and Rubinov A. M., Constructive Nonsmooth Analysis, Verlag Peter Lang, Frankfurt/Main (1995). 81. Diener F. and Diener M., “Les applications de l’analyse non standard,” Recherche, 20, No. 1, 68–83 (1989). 82. Diener F. and Diener M. (eds.), Nonstandard Analysis in Practice, SpringerVerlag, Berlin etc. (1995). 83. Diestel J., Geometry of Banach Spaces: Selected Topics, Springer-Verlag, Berlin etc. (1975). 84. Diestel J. and Uhl J. J., Vector Measures, Amer. Math. Soc., Providence, RI (1977). (Math. Surveys; 15.) 85. Digernes T., Husstad E., andVaradarajanV., “FiniteapproximationsofWeyl systems,” Math. Scand., 84, 261–283 (1999). 86. Digernes T., Varadarajan V., and Varadhan S., “Finite approximations to quantum systems,” Rev. Math. Phys., 6, No. 4, 621–648 (1994). 87. Dinculeanu N., Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin (1966). 88. Dixmier J., C∗-Algebras and Their Representations [in French], GauthierVillars, Paris (1964).

390 References

89. Dixmier J., C∗-Algebras, North-Holland, Amsterdam, New York, and Oxford (1977). 90. Dixmier J., Les Algebres d’Operateurs dans l’Espace Hilbertien (Algebres de von Neumann), Gauthier-Villars, Paris (1996). 91. Dolecki S., “A general theory of necessary optimality conditions,” J. Math. Anal. Appl., 78, No. 12, 267–308 (1980). 92. DoleckiS., “Tangencyanddierentiation: marginalfunctions,” Adv. inAppl. Math., 11, 388–411 (1990). 93. Dragalin A. G., “An explicit Boolean-valued model for nonstandard arithmetic,” Publ. Math. Debrecen, 42, No. 3–4, 369–389 (1993). 94. Dunford N. and Schwartz J. T., Linear Operators. Vol. 1: General Theory, John Wiley & Sons Inc., New York (1988). 95. Dunford N. and Schwartz J. T., Linear Operators. Vol. 2: Spectral Theory. Selfadjoint Operators in Hilbert Space, John Wiley & Sons Inc., New York (1988). 96. Dunford N. andSchwartz J. T., LinearOperators. Vol.3: Spectral Operators, John Wiley & Sons Inc., New York (1988). 97. Dunham W., Euler: The Master of Us All, The Mathematical Association of America, Washington (1999). (The Dolciani Mathematical Expositions, 22.) 98. Eda K., “A Boolean power and a direct product of abelian groups,” Tsukuba J. Math., 6, No. 2, 187–194 (1982). 99. Eda K., “On a Boolean power of a torsion free abelian group,” J. Algebra, 82, No. 1, 84–93 (1983). 100. Ekeland I. and TemamR., Convex Analysisand VariationalProblems, NorthHolland, Amsterdam (1976). 101. Eklof P., “Theory of ultraproducts for algebraists,” in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977. 102. Ellis D., “Geometry in abstract distance spaces,” Publ. Math. Debrecen, 2, 1–25 (1951). 103. Emelyanov `E. Yu., “Invariant homomorphisms of nonstandard enlargements of Boolean algebras and vector lattices,” Siberian Math. J., 38, No. 2, 244– 252 (1997). 104. EngelerE.,MetamathematicsofElementaryMathematics[inGerman], Springer-Verlag, Berlin etc. (1983). 105. Ershov Yu. L. and Palyutin E. A., Mathematical Logic [in Russian], Nauka, Moscow (1987). 106. Esenin-Volpin A. S., “Analysis of potential implementability,” in: Logic Studies [in Russian], Izdat. Akad. Nauk SSSR, Moscow, 1959, pp. 218–262. 107. Espanol L., “Dimension of Boolean valued lattices and rings,” J. Pure Appl. Algebra, No. 42, 223–236 (1986).

References 391

108. Euclid’s “Elements.” Books 7–10 [Russian translation], Gostekhizdat, Moscow and Leningrad (1949). 109. Euler L., Introduction to Analysis of the Innite. Book I [Russian translation], ONTI, Moscow (1936); [English translation], Springer-Verlag, New York etc. (1988). 110. Euler L., Dierential Calculus [Russian translation], Gostekhizdat, Leningrad (1949). 111. Euler L., Integral Calculus. Vol. 1 [Russian translation], Gostekhizdat, Moscow (1950). 112. Euler L., Opera Omnia. Series Prima: Opera Mathematica. Vol. 1–29, Birkh¨auser-Verlag, Basel etc. 113. Euler L., Foundations of Dierential Calculus, Springer-Verlag, New York (2000). 114. Faith C., Algebra: Rings, Modules, and Categories. Vol. 1, Springer-Verlag, Berlin etc. (1981). 115. Fakhoury H., “Repr´esentations d’op´erateurs `a valeurs dans L1(X,Σ,μ),” Math. Ann., 240, No. 3, 203–212 (1979). 116. Farkas E. and Szabo M., “On the plausibility of nonstandard proofs in analysis,” Dialectica, 38, No. 4, 297–310 (1974). 117. Fattorini H. O., The Cauchy Problem, Addison-Wesley (1983). 118. Foster A. L., “Generalized ‘Boolean’ theory of universal algebras. I. Subdirect sums and normal representation theorems,” Math. Z., 58, No. 3, 306–336 (1953). 119. FosterA.L., “Generalized‘Boolean’theory ofuniversal algebras.II.Identities and subdirect sums of functionally complete algebras,” Math. Z., 59, No. 2, 191–199 (1953). 120. Fourman M. P., “The logic of toposes,” in: Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977. 121. Fourman M. P. and Scott D. S., “Sheaves and logic,” in: Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Durham, 1977), Springer-Verlag, Berlin etc., 1979, pp. 302–401. 122. Fourman M. P., Mulvey C. J., and Scott D. S. (eds.), Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Durham, 1977), Springer-Verlag, Berlin etc., 1979. 123. Fraenkel A. and Bar-Hillel I., Foundations of Set Theory, North-Holland, Amsterdam (1958). 124. Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford (1963). 125. Fuller R. V., “Relations among continuous and various noncontinuous functions,” Pacic J. Math., 25, No. 3, 495–509 (1968).

392 References

126. Gandy R. O., “Limitations to mathematical knowledge,” in: Logic Colloquium-80, North-Holland, New York and London, 1982, pp. 129–146. 127. Georgescu G. and Voiculescu I., “Eastern model theory for Boolean-valued theories,” Z. Math. Logik Grundlag. Math., No. 31, 79–88 (1985). 128. GlazmanI.M.andLyubich Yu.I., Finite-DimensionalLinearAnalysis, M.I.T. Press, Cambridge (1974). 129. G¨odel K., “What is Cantor’s continuum problem?” Amer. Math. Monthly, 54, No. 9, 515–525 (1947). 130. G¨odel K., “Compatibility of the axiom of choice and the generalized continuum hypothesis with the axioms of set theory,” Uspekhi Mat. Nauk, 8, No. 1, 96–149 (1948). 131. Goldshten V. M., Kuzminov V. I., and Shvedov I. A., “The K¨unneth formula for Lp-cohomologies of warped products,” Sibirsk. Mat. Zh., 32, No. 5, 29–42 (1991). 132. Goldshten V. M., Kuzminov V. I., and Shvedov I. A., “On approximation of exact and closed dierential forms by compactly-supported forms,” Sibirsk. Mat. Zh., 33, No. 2, 49–65 (1992). 133. Goldblatt R., Topoi: Categorical Analysis of Logic, North-Holland, Amsterdam etc. (1979). 134. Goldblatt R., Lectures on the Hyperreals: An Introduction to Nonstandard Analysis, Springer-Verlag, New York etc. (1998). 135. Goodearl K. R., Von Neumann Regular Rings, Pitman, London (1979). 136. Gordon E. I., “Real numbers in Boolean-valued models of set theory and K-spaces,” Dokl. Akad. Nauk SSSR, 237, No. 4, 773–775 (1977). 137. GordonE.I., “K-spaces inBoolean-valuedmodelsofsettheory,”Dokl. Akad. Nauk SSSR, 258, No. 4, 777–780 (1981). 138. Gordon E. I., “To the theorems of identity preservation in K-spaces,” Sibirsk. Mat. Zh., 23, No. 3, 55–65 (1982). 139. Gordon E. I., RationallyCompleteSemiprime CommutativeRingsin Boolean Valued Models of Set Theory, Gorki, VINITI, No. 3286-83 Dep (1983). 140. Gordon E. I., “Nonstandard nite-dimensional analogs of operators in L2(Rn),” Sibirsk. Mat. Zh., 29, No. 2, 45–59 (1988). 141. Gordon E. I., “Relatively standard elements in E. Nelson’s internal set theory,” Sibirsk. Mat. Zh., 30, No. 1, 89–95 (1989). 142. Gordon E. I., “Hypernite approximations of locally compact Abelian groups,” Dokl. Akad. Nauk SSSR, 314, No. 5, 1044–1047 (1990). 143. Gordon E. I., Elements of Boolean Valued Analysis [in Russian], Gorki State University Press, Gorki (1991). 144. Gordon E. I., “Nonstandard analysis and compact Abelian groups,” Sibirsk. Mat. Zh., 32, No. 2, 26–40 (1991).

References 393

145. Gordon E. I., “On Loeb measures,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 25–33 (1991). 146. Gordon E. I., Nonstandard Methods in Commutative Harmonic Analysis, Amer. Math. Soc., Providence, RI (1997). 147. Gordon E. I. and Lyubetski V. A., “Some applications of nonstandard analysis in the theory of Boolean valued measures,” Dokl. Akad. Nauk SSSR, 256, No. 5, 1037–1041 (1981). 148. Gordon E. I. and Morozov S. F., Boolean Valued Models of Set Theory [in Russian], Gorki State University, Gorki (1982). 149. Gra¨tzer G., General Lattice Theory, Birkh¨auser-Verlag, Basel (1978). 150. Grayson R. J., “Heyting-valued models for intuitionistic set theory,” Applications of Sheaves (Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal., Durham, 1977), Springer-Verlag, Berlin etc., 1979, pp. 402–414. 151. Gurari V. P., Group Methods in Commutative Harmonic Analysis [in Russian], VINITI, Moscow (1988). 152. Gutman A. E., “Banach bering in lattice normed space theory,” in: Linear Operators Compatible with Order [in Russian], Sobolev Institute Press, Novosibirsk, 1995, pp. 63–211. 153. GutmanA.E., “Locallyone-dimensional K-spacesand σ-distributiveBoolean algebras,” Siberian Adv. Math., 5, No. 2, 99–121 (1995). 154. Gutman A. E., Emelyanov `E. Yu., Kusraev A. G., and Kutateladze S. S., Nonstandard Analysis and Vector Lattices, Kluwer Academic Publishers, Dordrecht (2000). 155. Hallet M., Cantorian Set Theory and Limitation of Size, Clarendon Press, Oxford (1984). 156. Halmos P. R., Lectures on Boolean Algebras, Van Nostrand, Toronto, New York, and London (1963). 157. Hanshe-Olsen H. and St¨ormer E., Jordan Operator Algebras, Pitman Publishers Inc., Boston etc. (1984). 158. Harnik V., “Innitesimals from Leibniz to Robinson time—to bring them back to school,” Math. Intelligencer, 8, No. 2, 41–47 (1986). 159. HatcherW., “Calculusisalgebra,” Amer. Math. Monthly, 89, No. 6, 362–370 (1989). 160. Heinrich S., “Ultraproducts of L1-predual spaces,” Fund. Math., 113, No. 3, 221–234 (1981). 161. Helgason S., The Radon Transform, Birkh¨auser-Verlag, Boston (1999). 162. Henle J. M. and Kleinberg E. M., Innitesimal Calculus, Alpine Press, Cambridge and London (1979). 163. Henson C. W., “On the nonstandard representation of measures,” Trans. Amer. Math. Soc., 172, No. 2, 437–446 (1972).

394 References

164. Henson C. W., “When do two Banach spaces have isometrically isomorphic nonstandard hulls?” Israel J. Math., 22, 57–67 (1975). 165. Henson C. W., “Nonstandard hulls of Banach spaces,” Israel J. Math., 25, 108–114 (1976). 166. Henson C. W., “Unbounded Loeb measures,” Proc. Amer. Math. Soc., 74, No. 1, 143–150 (1979). 167. Henson C. W., “Innitesimals in functional analysis,” in: Nonstandard Analysis and Its Applications, Cambridge University Press, Cambridge etc., 1988, pp. 140–181. 168. Henson C. W. and Keisler H. J., “On the strength of nonstandard analysis,” J. Symbolic Logic, 51, No. 2, 377–386 (1986). 169. Henson C. W. andMoore L. C.Jr. “Nonstandard hulls oftheclassical Banach spaces,” Duke Math. J., 41, No. 2, 277–284 (1974). 170. Henson C. W. and Moore L. C. Jr., “Nonstandard analysis and the theory of Banach spaces,” in: Nonstandard Analysis. Recent Developments, SpringerVerlag, Berlin etc., 1983, pp. 27–112. (Lecture Notes in Math., 983.) 171. HensonC.W., KaufmannM.,andKeislerH.J.,“Thestrengthofnonstandard methods in arithmetic,” J. Symbolic Logic, 49, No. 34, 1039–1057 (1984). 172. Hermann R., “Supernear functions,” Math. Japon., 31, No. 2, 320 (1986). 173. HernandezE.G.,“Boolean-valuedmodelsofsettheorywithautomorphisms,” Z. Math. Logik Grundlag. Math., 32, No. 2, 117–130 (1986). 174. Hewitt E. and Ross K., Abstract Harmonic Analysis. Vol. 1 and 2, Springer -Verlag, Berlin etc. (1994). 175. Hilbert D. and Bernays P., Foundations of Mathematics. Logical Calculi and the Formalization of Arithmetic [in Russian], Nauka, Moscow (1979). 176. Hilbert’s Problems [in Russian], Nauka, Moscow (1969). 177. Hiriart-UrrutyJ.-B., “Tangentcones, generalizedgradientsandmathematical programming in Banach spaces,” Math. Oper. Res., 4, No. 1, 79–97 (1979). 178. Hobbes T., Selected Works. Vol. 1 [Russian translation], Mysl, Moscow (1965). 179. Hoehle U., “Almost everywhere convergence and Boolean-valued topologies,” in: Topology, Proc. 5th Int. Meet., Lecce/Italy 1990, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 29, 1992, pp. 215–227. 180. Hofmann K. H. and Keimel K., “Sheaf theoretical concepts in analysis: Bundles and sheaves of Banach spaces, Banach C(X)-modules,” in: Applications of Sheaves, Proc. Res. Sympos., Durham, 1977, Springer-Verlag, Berlin etc., 1979, pp. 415–441. 181. Hofstedter D. R., G¨odel, Escher, Bach: an Eternal Golden Braid, Vintage Books, New York (1980). 182. Hogbe-Nlend H., Theorie des Bornologie et Applications, Springer-Verlag, Berlin etc. (1971).

References 395

183. Horiguchi H., “A denition of the category of Boolean-valued models,” Comment. Math. Univ. St. Paul., 30, No. 2, 135–147 (1981). 184. Horiguchi H., “The category of Boolean-valued models and its applications,” Comment. Math. Univ. St. Paul., 34, No. 1, 71–89 (1985). 185. Hrb´ acek K., “Axiomaticfoundations fornonstandardanalysis,” Fund. Math., 98, No. 1, 1–24 (1978). 186. Hrb´ acek K., “Nonstandard set theory,” Amer. Math. Monthly, 86, No. 8, 659–677 (1979). 187. Hurd A. E. (ed.), Nonstandard Analysis. Recent Developments, SpringerVerlag, Berlin (1983). 188. HurdA.E.andLoebH.,AnIntroductiontoNonstandardAnalysis,Academic Press, Orlando etc. (1985). 189. Ilin V. A., Sadovnichi V. A., and Sendov Bl. Kh., Mathematical Analysis [in Russian], Nauka, Moscow (1979). 190. Ionescu Tulcea A. and Ionescu Tulcea C., Topics in the Theory of Lifting, Springer-Verlag, Berlin etc. (1969). 191. Ivanov V. V., “Geometric properties of monotone functions and probabilities of random uctuations,” Siberian Math. J., 37, No. 1, 102–129 (1996). 192. Ivanov V. V., “Oscillations of means in the ergodic theorem,” Dokl. Akad. Nauk, 347, No. 6, 736–738 (1996). 193. Jae A., “Ordering the universe: the role of mathematics,” SIAM Rev., 26, No. 4, 473–500 (1984). 194. Jarnik V., Bolzano and the Foundations of Mathematical Analysis, Society of Czechosl. Math. Phys., Prague (1981). 195. Jech T. J., Lectures in Set Theory with Particular Emphasis on the Method of Forcing, Springer-Verlag, Berlin (1971). 196. Jech T. J., The Axiom of Choice, North-Holland, Amsterdam etc. (1973). 197. Jech T. J., “Abstract theory of abelian operator algebras: an application of forcing,” Trans. Amer. Math. Soc., 289, No. 1, 133–162 (1985). 198. Jech T. J., “First order theory of complete Stonean algebras (Boolean-valued real and complex numbers),” Canad. Math. Bull., 30, No. 4, 385–392 (1987). 199. Jech T. J., “Boolean-linear spaces,” Adv. in Math., 81, No. 2, 117–197 (1990). 200. Jech T. J., Set Theory, Springer-Verlag, Berlin (1997). 201. Johnstone P. T., Topos Theory, Academic Press, London etc. (1977). 202. Johnstone P. T., Stone Spaces, Cambridge University Press, Cambridge and New York (1982). 203. Jordan P., von Neumann J., and Wigner E., “On an algebraic generalization of the quantum mechanic formalism,” Ann. Math., 35, 29–64 (1944). 204. Kachurovski A. G., “Boundedness of mean uctuations in the statistic ergodic theorem,” Optimization, No. 48(65), 71–77 (1990).

396 References

205. Kachurovski A. G., “The rate of convergence in ergodic theorems,” Uspekhi Mat. Nauk, 51, No. 4, 73–124 (1996). 206. Kadison R. V. and Ringrose J. R., Fundamentals of the Theory of Operator Algebras, Vol. 1 and 2, Amer. Math. Soc., Providence, RI (1997). Vol. 3 and 4, Birkh¨auser-Verlag, Boston (1991–1992). 207. Kalina M., “On the ergodic theorem within nonstandard models,” Tatra Mt. Math. Publ., 10, 87–93 (1997). 208. Kalton N. J., “The endomorphisms of Lp (0 ≤ p ≤ 1),” Indiana Univ. Math. J., 27, No. 3, 353–381 (1978). 209. Kalton N. J., “Linear operators on Lp for 0